УДК 539.17.01:539.142:539.143

ИЗУЧЕНИЕ ОСНОВНЫХ СОСТОЯНИЙ ЯДЕР ^{6, 7, 9, 10}Ве МЕТОДОМ ФЕЙНМАНОВСКИХ КОНТИНУАЛЬНЫХ ИНТЕГРАЛОВ

© 2020 г. В. В. Самарин^{1, 2, *}

¹Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия

²Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

> **E-mail: samarin@jinr.ru* Поступила в редакцию 30.10.2019 г. После доработки 25.11.2019 г. Принята к публикации 27.12.2019 г.

Энергия и квадрат модуля волновой функции основного состояния ядер^{6, 7, 9, 10}Ве вычислены методом континуальных интегралов Фейнмана в модели взаимодействия альфа-кластеров и внешних нуклонов. Для энергии получено согласие с экспериментальными данными. Продемонстрировано проявление в структуре ядра⁷Ве кластера³Не. Для ядер^{7, 9, 10}Ве также были проведены расчеты в оболочечной модели деформированного ядра. Обе модели позволили объяснить отрицательное значение параметра квадрупольной деформации ядра⁷Ве и положительное значение параметра квадрупольной деформации ядер^{9, 10}Ве.

DOI: 10.31857/S0367676520040274

введение

Низкоэнергетические реакции с участием ядер трития, гелия, лития и бериллия [1] составляют значительную часть изученных и продолжающих изучаться в настоящее время ядерных реакций. Реакции с изотопами Ве представляют значительный интерес с нескольких точек зрения. Радиоактивное ядро ⁷Ве (с периодом полураспада $T_{1/2} = 53$ д) является зеркальным по отношению к стабильному ядру ⁷Li, которое можно представить состоящим из α-кластера и тритонного кластера [2-4]. Ядра ⁹Ве и ¹⁰Ве представляют состоящими из двух α-кластеров и, соответственно из одного и двух внешних (валентных) слабосвязанных нейтронов [5-7]. Знание свойств и волновой функции основного состояния нуклидов бериллия необходимо для теоретического описания реакций с их участием.

Уравнение Шредингера в рамках задачи трех тел с ортогональным проектированием впервые было решено для ядра ⁶Li в работе [8]. В работе [9] уравнение Шредингера для трехтельной системы ⁶He ($n + n + \alpha$) было решено с помощью разложений по гиперсферическим функциям. В работах [10, 11] волновые функции системы трех тел были получены с помощью гауссового базиса и численного решения системы интегральных уравнений Хилла–Уилера (Hill–Wheeler). Более простую возможность вычисления энергии E_0 и плотности вероятности $|\Psi_0(\vec{r_1},...,\vec{r_n})|^2$ для основного состояния *n*-частичной системы дает метод континуальных интегралов Фейнмана [12–17]. Его универсальность позволила в едином подходе выполнить расчеты для ряда малонуклонных ядер: ³H, ^{3, 4, 6}He, ^{6, 7, 11}Li [3, 4, 16, 17]. В данной работе подобные многотельные расчеты проведены для ядер ^{7, 9, 10}Be.

МЕТОД КОНТИНУАЛЬНЫХ ИНТЕГРАЛОВ ФЕЙНМАНА

Энергия E_0 и квадрат модуля волновой функции основного состояния $|\Psi_0|^2$, зависящей от координаты q, могут быть найдены с помощью введенных Р. Фейнманом континуальных интегралов (интегралов по траекториям) [12, 13]. Континуальный интеграл (пропагатор) в мнимом (евклидовом) времени $t = -i\tau$ [14, 15] для частицы массой m с потенциальной энергией V(q) можно представить (см. [4, 7]) в виде

$$K_{\rm E}(q,\tau;q,0) \approx \left(\frac{m}{2\pi\hbar\tau}\right)^{1/2} \times \left\langle \exp\left[-\frac{\Delta\tau}{\hbar}\sum_{k=1}^{N}V(q_k)\right] \right\rangle_{0,N}.$$
(1)

Здесь $\tau = N\Delta \tau$ и угловыми скобками (...) обозначено усреднение по случайным (N-1)-мерным векторам ("траекториям") [7], которое может быть выполнено методом Монте-Карло. Для реализации расчетов средних по случайным траекториям в данной работе использована технология CUDA параллельных вычислений на графических процессорах [18–20]. Расчеты были выполнены на гетерогенном кластере "HybriLIT" [21] Лаборатории информационных технологий Объединенного института ядерных исследований.

Энергии E_0 , E_1 и квадраты модуля волновой функции $|\Psi_0(q)|^2$, $|\Psi_1(q)|^2$ основного и первого возбужденного состояний определяют первые члены асимптотики пропагатора в пределе $\tau \to \infty$ [14, 15]

$$K_{E}(q,\tau;q,0) \rightarrow |\Psi_{0}(q)|^{2} \times \exp\left(-\frac{E_{0}\tau}{\hbar}\right) + |\Psi_{1}(q)|^{2} \exp\left(-\frac{E_{1}\tau}{\hbar}\right) + \dots, \qquad (2)$$
$$\tau \rightarrow \infty.$$

Для удобства расчетов в масштабах действия ядерных сил удобно использовать безразмерные переменные $\tilde{q} = q/x_0$, $\tilde{V} = V(q)/\varepsilon_0$, $\tilde{E}_0 = E_0/\varepsilon_0$ $\tilde{m} = m/m_0$, $\tilde{\tau} = \tau/t_0$, $\Delta \tilde{\tau} = \Delta \tau/t_0$, $\tilde{K}_{\rm E} = K_{\rm E} x_0$, где $x_0 = 1$ фм, $\varepsilon_0 = 1$ МэВ, m_0 — масса нейтрона, $t_0 = m_0 x_0^2/\hbar \approx 1.57 \cdot 10^{-23}$ с, $b_0 = t_0 \varepsilon_0/\hbar \approx 0.02412$, тогда в области линейной части графика зависимости пропагатора от $\tilde{\tau}$

$$b_0^{-1} \ln \tilde{K}_{\rm E}\left(\tilde{q}, \tilde{\tau}; \tilde{q}, 0\right) \approx b_0^{-1} \ln \left|\Psi_0(\tilde{q})\right|^2 - \tilde{E}_0 \tilde{\tau}, \qquad (3)$$

$$\widetilde{K}_{\mathrm{E}}(\widetilde{q},\widetilde{\tau};\widetilde{q},0) \approx \left(\frac{\widetilde{m}}{2\pi\widetilde{\tau}}\right)^{1/2} \times \\
\times \left\langle \exp\left[-\Delta\widetilde{\tau}b_{0}\sum_{k=1}^{N}\widetilde{V}(\widetilde{q}_{k})\right] \right\rangle_{0,N}.$$
(4)

Наличие линейной части графика зависимости (3) позволяет непосредственно вычислить квадрат модуля ненормированной волновой функции основного состояния $|\Psi_0(q)|^2$,

$$\left|\Psi_{0}(\tilde{q})\right|^{2} = \operatorname{const}\tilde{K}_{\mathrm{E}}\left(\tilde{q},\tilde{\tau};\tilde{q},0\right),\tag{5}$$

а с помощью линейной регрессии найти энергию основного состояния E_0 [3, 7, 16, 17].

Формулы (1)–(5) естественным образом обобщаются на случаи большего числа степеней свободы. Поскольку волновая функция основного состояния не имеет узловых точек (линий или поверхностей) и не меняет знака, ненормированная волновая функция может быть найдена по формуле

$$\Psi_0(q) = \sqrt{K_E(q,\tau;q,0)}.$$
 (6)

Точность данного метода для трехмерного изотропного осциллятора с дискретным спектром состояний продемонстрирована в работе [7]. Типичные модельные парные потенциалы взаимодействия нуклонов с нуклонами, нуклонов с α-кластером и α-кластера с α-кластером имеют область притяжения с конечным радиусом и отталкивательный кор на малых расстояниях между частицами. Для проверки применимости и оценки степени точности метода для подобных потенциалов в случаях дискретного и непрерывного спектров рассмотрим модельные системы из нескольких взаимодействующих только с бесконечно тяжелым остовом частиц массы *m*, равной массе нейтрона. В качестве парных потенциалов выберем потенциалы, для которых известны аналитические выражения для энергии основного состояния Е₀. В модифицированном потенциале Пешля-Теллера [22], соответствующем притяжению между частицами

$$V_{\rm PT}(r) = -\frac{\hbar^2 \alpha^2}{2m} \frac{\lambda(\lambda - 1)}{{\rm ch}^2 \alpha r},$$
(7)

энергия основного состояния равна

$$E_{0} = -\frac{\hbar^{2}\alpha^{2}}{2m}(\lambda - 2)^{2}.$$
 (8)

График потенциала (7), которому соответствует энергия основного состояния частицы $E_0^{(1)} = -20$ МэВ, показан на рис. 1*а*. Расчет методом Монте-Карло для $n = 2 \cdot 10^6$ траекторий с шагом сетки $\Delta \tilde{\tau} = 0.01$ дал значение $E_0^{(1)} = 20.7 \pm 0.3$ МэВ достаточно близкое к точному.

В потенциале Морса [22] с отталкивательным кором

$$V_{\rm M}(r) = D[\exp(-2\alpha x) - 2\exp(-\alpha x)],$$

 $x = \frac{r - r_0}{r_0},$ (9)

энергии s-состояний находятся из уравнения

$$F(a(E), c(E), y_0) = 0,$$
 (10)

где *F* — вырожденная гипергеометрическая функция,

$$a(E) = \frac{1}{2} + \frac{\beta(E) - \gamma}{\alpha}, \quad c(E) = 1 + 2\frac{\beta(E)}{\alpha}, \quad (11)$$

$$\beta^2 = -\frac{2mr_0^2}{\hbar^2}E, \quad \gamma^2 = \frac{2mr_0^2}{\hbar^2}D, \quad y_0 = \frac{2\gamma}{\alpha}\exp(\alpha).$$
 (12)

Графики потенциалов (9), которым соответствуют энергии основного состояния частицы $E_0^{(1)} = -1$ МэВ и $E_0^{(1)} = -5$ МэВ показаны на рис. 1*а*. В частности, энергия равна $E_0^{(1)} = -1$ МэВ для значений параметров D = 32.82 МэВ, $\alpha = 3.28$, $r_0 =$

 $V_{\rm PT}, V_{\rm M}, {\rm M}
ightarrow {\rm B}$

= 1.58 фм. Для системы из двух взаимодействующих только с бесконечно тяжелым остовом частиц энергия основного состояния равна $E_0^{(2)} = 2E_0^{(1)}$, для потенциалов Морса, показанных на рис. 1*a*, $E_0^{(2)} = -2$ МэВ и $E_0^{(2)} = -10$ МэВ, соответственно. Результаты расчетов пропагатора для $n = 7 \cdot 10^7$ траекторий с шагом сетки $\Delta \tilde{\tau} = 0.01$ показаны на рис. 1*b*. С помощью линейной регрессии, примененной к линейному участку графика, были получены значения $E_0^{(2)} = -1.7 \pm 0.3$ МэВ и $E_0^{(2)} = -10.7 \pm 0.7$ МэВ соответственно. Они достаточно хорошо согласуются с точными значениями. Недооценка точного значения -2 МэВ может быть обусловлена заметным вкладом в пропагатор состояний непрерывного спектра с $E^{(2)} \ge 0$.

ОСНОВНОЕ СОСТОЯНИЕ ЯДЕР 6,7Ве

Принцип Паули для ядер ^{6, 7}Ве можно не учитывать, если рассматривать их как систему из остова (α -кластера) и внешних нуклонов с конфигурациями {p, p} и {p, p, n} соответственно. В таком случае в рассматриваемых системах будет не более двух тождественных нуклонов. Ядерная часть потенциальной энергии взаимодействия внешних нуклонов в ядре ⁷Ве может быть представлена в виде суммы парных взаимодействий нуклонов друг с другом [3, 23]

$$V_{p,p,n}^{(N)} = V_{p-p}^{(0^{+})} \left(\left| \vec{r}_{1} - \vec{r}_{2} \right| \right) + V_{p-n}^{(1^{+})} \left(\left| \vec{r}_{1} - \vec{r}_{3} \right| \right) + V_{p-n}^{(0^{+})} \left(\left| \vec{r}_{2} - \vec{r}_{3} \right| \right).$$
(13)

Здесь $V_{p-n}^{(l^+)}(r)$ — триплетный потенциал взаимодействия протона с нейтроном, имеющий место в дейтроне, $V_{p-n}^{(0^+)}(|\vec{r}_1 - \vec{r}_2|)$ и $V_{p-p}^{(0^+)}(|\vec{r}_1 - \vec{r}_2|)$ — это не имеющие связанных состояний синглетные потенциалы взаимодействия соответственно протона с нейтроном и протона с протоном.

Потенциал взаимодействия протона с α -кластером $V_{p-\alpha}(r)$ включал ядерную (N) и кулоновскую (C) части

$$V_{p-\alpha}(r) = V_{p-\alpha}^{(N)}(r) + V_{p-\alpha}^{(C)}(r).$$
(14)

Для кулоновской части взаимодействия использовалось известное выражение для энергии точечного заряда в поле равномерно заряженного шара. Ядерная часть эффективного потенциала взаимодействия нуклона с ядерным остовом $V_{n-\alpha}(r) \equiv V_{p-\alpha}^{(N)}(r)$ в работе [3] была выбраны в виде комбинации

$$U(r) = -U_1 f(r; B_1, a_1) + + U_2 f(r; B_2, a_2) - U_3 f(r; B_3, a_3) f(r; B_4, a_4),$$
(15)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8

2020

Рис. 1. (*a*) Графики потенциалов: $V_{\text{PT}}(r)$ (7) для энергии основного состояния частицы $E_0^{(1)} = -20$ МэВ (сплошная кривая) и $V_{\text{M}}(r)$ (9) для энергии основного состояния нейтрона $E_0^{(1)} = -1$ МэВ (штриховая кривая), и $E_0^{(1)} = -5$ МэВ (штрих-пунктирная кривая), горизонтальные отрезки – соответствующие уровни энергии; (*б*) Зависимости нормированного логарифма пропагатора $b_0^{-1} \ln \tilde{K}_{\text{E}}$ от мнимого времени $\tilde{\tau}$ для системы из двух частиц, взаимодействующих только с бесконечно тяжелым остовом потенциалом $V_{\text{M}}(r)$ (7), для энергии основного состояния $E_0^{(2)} = -2$ МэВ (точки), и $E_0^{(2)} = -10$ МэВ (кружки): прямые – результаты линейной регрессии, примененной к линейному участку графика.

функций типа типа Вудса-Саксона (фермиевского распределения)

$$f(r; B, a) = \left[1 + \exp\left(\frac{r-B}{a}\right)\right]^{-1}.$$
 (16)

а

Рис. 2. (а) Графики ядерного псевдопотенциала U(r)(15) взаимодействия протона с α -кластером в ядрах ⁶Ве, ⁷Ве (сплошная линия) и потенциала $V_{p-n}^{(1^+)}$ взаимодействия протона с нейтроном в ядре ²Н (штриховая линия). (б) Зависимости нормированного логарифма пропагатора $b_0^{-1} \ln \tilde{K}_E$ от мнимого времени $\tilde{\tau}$ для ⁶Ве (точки) и ⁷Ве (кружки): прямые – результаты линейной регрессии, примененной к линейному участку графика.

Графики функции U(r) взаимодействия протона

с α -кластером в ядрах ⁶Be, ⁷Be и потенциала $V_{p-n}^{(1^+)}$ взаимодействия протона с нейтроном в ядре ²H показаны на рис. 2*a*. Выражение (15) имеет смысл псевдопотенциала сильного взаимодействия α кластера с нейтроном и протоном, аналогичного псевдопотенциалу [24], используемому в физике металлов для описания взаимодействия внешних электронов (из зоны проводимости) с атомными остовами. Второе положительное слагаемое в (15) объясняется наличием отталкивательных ко́ров в потенциалах нуклон-нуклонного взаимодействия и следствием принципа Паули. Энергия основного состояния в системе остов-нуклон оказывается близкой к энергии самого верхнего заполненного уровня оболочечной модели ядра. При этом состояния нуклонов ядерного остова, соответствующие нижележащим уровням, оказываются исключенными (запрещенными).

Вычисления производились в системе центра масс. Для ядра ⁶Ве (системы $p + p + \alpha$) с радиусвекторами протонов \vec{r}_{p_1} , \vec{r}_{p_2} и радиус-вектором α -кластера \vec{r}_{α} координаты Якоби (см., например [13]) равны

$$\vec{x} = \vec{r}_{p_2} - \vec{r}_{p_1}, \quad \vec{y} = \vec{r}_{\alpha} - \frac{1}{2} (\vec{r}_{p_1} + \vec{r}_{p_2}).$$
 (17)

Для ядра ⁷Ве (системы $p + p + n + \alpha$) использовались координаты Якоби

$$\vec{x} = \vec{r}_{p_2} - \vec{r}_{p_1}, \quad \vec{y} = \frac{1}{2} (\vec{r}_{p_1} + \vec{r}_{p_2}) - \vec{r}_n,
\vec{z} = \frac{1}{3} (\vec{r}_{p_1} + \vec{r}_{p_2} + \vec{r}_n) - \vec{r}_\alpha,$$
(18)

при этом из-за небольшой разницы масс протона и нейтрона их массы считались одинаковыми. Вычисление плотности вероятности по формуле (5) для ядра ⁶Be с потенциальной энергией, симметричной по отношению к перестановке протонов, дает координатную волновую функцию, симметричную по отношению к перестановке протонов. Для ядра ⁷Be с потенциальной энергией

$$V_{p,p,n,\alpha} = V_{p,p,n}^{(N)} + V_{p-\alpha} \left(\left| \vec{r}_{p_{1}} - \vec{r}_{\alpha} \right| \right) + V_{p-\alpha} \left(\left| \vec{r}_{p_{2}} - \vec{r}_{\alpha} \right| \right) + U \left(\left| \vec{r}_{n} - \vec{r}_{\alpha} \right| \right),$$
(19)

симметричную по отношению к перестановке протонов волновую функцию можно получить, образовав симметричную комбинацию в координатах Якоби

$$\Psi_{\rm S}(\vec{x}, \vec{y}, \vec{z}) = \Phi_0(\vec{x}, \vec{y}, \vec{z}) + \Phi_0(-\vec{x}, \vec{y}, \vec{z}), \qquad (20)$$

где

$$\Phi_0(\vec{x}, \vec{y}, \vec{z}) = \sqrt{K_E(\vec{r}_1, \vec{r}_2, \vec{r}_3, \tau; \vec{r}_1, \vec{r}_2, \vec{r}_3, 0)}.$$
 (21)

Для определения энергии E_0 основного состояния ядер^{6,7}Ве численные расчеты пропагатора (4) проводились с числом траекторий $n \sim 10^6 - 10^8$ и шагом сетки по мнимому времени $\Delta \tilde{\tau} = 0.01$. Результаты показаны на рис. 2. Экспериментальное значение энергии разделения E_s ядра⁷Ве на α -кластер, два протона и нейтрон равно 9.31 МэВ [25]. Ядро ⁶Ве нестабильно, энергия системы из α -кластера и двух протонов положительна $E_0 = 0.593$ МэВ [25]. Результаты расчетов пропагатора для $n = 7 \cdot 10^7$ траекторий с шагом сетки $\Delta \tilde{\tau} = 0.01$ по-казаны на рис. 26. С помощью линейной регрес-

сии, примененной к линейному участку графика, были получены достаточно близкие к экспериментальным значения $E_0 = 1.3 \pm 0.5$ МэВ для ⁶Ве и $E_0 = -9.5 \pm 0.5$ МэВ для ⁷Ве.

Распределение плотности вероятности $\tilde{K}_{\rm E}(x, y; \tilde{\tau})$ для трехтельной конфигурации короткоживущего ядра ⁶Ве ($p + p + \alpha$) с положительной энергией основного состояния (см. рис. 2*б*) показано на рис. 3. Во время существования короткоживущего ядра ⁶Ве (резонанса при тройном столкновении) наиболее вероятными являются конфигурации с объединением протонов в двухпротонный кластер и сигарообразная конфигурация ($p-\alpha-p$).

Плотность вероятности $|\Psi_0|^2$ для четырехтельной конфигурации ядра ⁷Ве ($p + p + n + \alpha$) сходна с приведенной в работах [3, 4] плотностью вероятности для ядра ⁷Li ($n + n + p + \alpha$). Наиболее вероятным является расположение внешних нуклонов в виде кластера ³He [3, 7] (правильного треугольника), тесно соединенного с почти сферическим кластером ⁴He. Это позволяет заключить, что ядро ⁷Ве также сильно деформировано, как и сильно деформированное ядро ⁷Li с параметром квадрупольной деформации $\beta_2 \approx -1$ [26]. Сплюснутая форма ядра ⁷Ве может соответствовать усреднению по всевозможным поворотам системы ³He + α вокруг направления, перпендикулярного межкластерной оси.

В качестве дополнительной модели ядра ⁷Ве была использована оболочечная модель с аксиально-симметричной ядерной частью потенциала в форме Вудса-Саксона (см. например, [25]). Кулоновская часть потенциала для протонов представляла собой электрическое поле однородно заряженного сплюснутого эллипсоида и вычислялась численно. Численное решение уравнения Шредингера для нуклонов при $\beta_2 = -1$ выполнялось методом, приведенным в [27]. Значения параметров потенциала определялись из условия равенства энергий отделения нуклонов с верхних заполненных уровней экспериментальным значениям энергии отделения. Полученная схема уровней протонов (энергия отделения протона равна 5.61 МэВ, [25]) приведена на рис. 4а, плотности вероятности для заполненных низших уровней с квантовыми числами $|m_i| = 1/2$, $|m_i| = 3/2$ ($|m_i|$ — модуль проекции полного углового момента нуклона на ось симметрии ядра) показаны на рис. 4б. Уровни и плотность вероятности для нейтронов имеют аналогичный вид. Двум нейтронам и двум протонам на глубоких низших уровнях, соответствующих уровню 1s_{1/2} сферического ядра с проекцией полного момента на ось симметрии ядра $|m_i| = 1/2$, отвечает ядерный остов, близкий к поляризованному α-кластеру. Внешние нейтрон и два протона

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020

Рис. 3. Топография (в логарифмическом масштабе) пропагатора $\tilde{K}_{\rm E}(x, y; \tilde{\tau})$ системы ⁶Be $(p + p + \alpha)$ для $\tilde{\tau} = 20$ в координатах Якоби $\vec{x} \perp \vec{y}$ (*a*) и $\vec{x} \parallel \vec{y}$ (*b*). Наиболее вероятными являются конфигурации с объединением протонов в двухпротонный кластер *I* и сигарообразная конфигурация *2*. Область *3* соответствует короткоживущему состоянию (резонансу) при столкновении протонов вдали от скластера. Областям *4* и *5* соответствуют аналогичные резонансы при столкновениях протона с α -кластером вдали от другого протона.

ядра ⁷Ве на подуровне с проекцией полного момента на ось симметрии ядра $|m_j| = 3/2$, соответствующем уровню $1p_{3/2}$ сферического ядра, определяют сплюснутую форму ядра ⁷Ве. Таким образом, и четырехтельная и оболочечная модели объясняют отрицательное значение параметра квадрупольной деформации ядра ⁷Ве.

Рис. 4. (*a*) Схемы уровней энергии протонов ядра ⁷Ве в оболочечной модели деформированного ядра с параметром квадрупольной деформации $\beta_2 \approx -1$, сплошные отрезки – занятые уровни, штриховой – свободный. (*б*) Плотности вероятности (в логариф-мическом масштабе) в цилиндрических координатах (по горизонтали – ось симметрии) для двух заполненных уровней протонов с квантовыми числами модуля проекции полного углового момента нуклона на ось симметрии ядра $|m_i| = 1/2$ (внизу) и $|m_i| = 3/2$ (вверху).

ОСНОВОЕ СОСТОЯНИЯ ЯДЕР 9, 10 Ве

Ядра ⁹Ве и ¹⁰Ве представим состоящими из двух α-кластеров и из одного и двух нейтронов соответственно. Потенциальная энергия взаимодействия двух α-кластеров на расстояниях, превышающих удвоенный среднеквадратичный зарядовый радиус ядра ⁴Не (1.68 фм, см. например [25]), может быть выбрана в форме комбинации потенциала Вудса-Саксона с параметрами Акюза-Винтера [28] и потенциала кулоновского отталкивания двух точечных зарядов $V_{\alpha-\alpha}(r) = V_{\alpha-\alpha}^{(N)}(r) + V_{\alpha-\alpha}^{(C)}(r)$. На малых расстояниях кулоновская часть $V^{(\mathrm{C})}_{\alpha-lpha}(r)$ может быть представлена в форме потенциала взаимодействия двух равномерно заряженных шаров. Ядерную часть взаимодействия α-кластеров с учетом усредненного действия отталкивательного кора нуклон-нуклонного взаимодействия и принципа Паули можно описать с помощью псевдопотен-

циала $V_{\alpha-\alpha}^{(N)}(r)$ в форме суммы двух функций типа Вудса—Саксона

$$V_{\alpha-\alpha}^{(N)}(r) = -U_{\alpha l}f(r; B_{\alpha l}, a_{\alpha l}) + U_{\alpha 2}f(r; B_{\alpha 2}, a_{\alpha 2}),$$
(22)

Рис. 5. а) Графики псевдопотенциала (22) взаимодействия двух α -кластеров в ядрах ⁹Ве (сплошная линия) и ¹⁰Ве (штриховая линия) δ) Зависимости нормированного логарифма пропагатора $b_0^{-1} \ln \tilde{K}_E$ от мнимого времени $\tilde{\tau}$ для ядер ⁹Ве (кружки) и ¹⁰Ве(точки), прямые — результаты линейной регрессии, примененной к линейному участку графика.

его типичные графики показаны на рис. 5а.

Для ядра ⁹Ве (системы $\alpha + n + \alpha$) с радиус-векторами α -кластеров \vec{r}_{α_1} , \vec{r}_{α_2} и радиус-вектором нейтрона \vec{r}_{α} координаты Якоби равны

$$\vec{x} = \vec{r}_{\alpha_2} - \vec{r}_{\alpha_1}, \quad \vec{y} = \vec{r}_n - \frac{1}{2} (\vec{r}_{\alpha_1} + \vec{r}_{\alpha_2}).$$
 (23)

Для ядра ¹⁰Ве (системы $\alpha + n + n + \alpha$) использовались координаты Якоби

$$\vec{x} = \vec{r}_{\alpha_2} - \vec{r}_{\alpha_1}, \quad \vec{y} = \vec{r}_{n_2} - \vec{r}_{n_1},
\vec{z} = \frac{1}{2} (\vec{r}_{n_1} + \vec{r}_{n_2}) - \frac{1}{2} (\vec{r}_{\alpha_2} + \vec{r}_{\alpha_1}).$$
(24)

Рис. 6. Топография (в логарифмическом масштабе) плотности вероятности $|\Psi_0(x, y, \theta; \tilde{\tau})|^2$ основного состояния ядра ⁹Ве для $\tilde{\tau} = 30$. Указаны векторы \vec{x}, \vec{y} в координатах Якоби и примеры положения нейтронов (маленькие кружки) и α -кластеров (большие кружки). Наибольшую вероятность имеет конфигурация 1 с валентным нейтроном между α -кластерами $\alpha + n + \alpha$, конфигурация 2 $\alpha + {}^{5}$ Не имеет меньшую вероятность.

Вычисление плотности вероятности по формуле (5) с потенциальной энергией, симметричной по отношению к перестановке α-кластеров (и нейтронов для ядра ¹⁰Ве), дает координатную волновую функцию, симметричную по отношению к перестановке α-кластеров (и нейтронов для ядра ¹⁰Ве).

Экспериментальные значения энергии разделения ядер ⁹Ве и ¹⁰Ве на α -кластеры и нейтроны равны 1.57 МэВ для ядра ⁹Ве и 8.38 МэВ для ядра ¹⁰Ве [25]. Результаты расчетов пропагатора для $n = 7 \cdot 10^7$ траекторий с шагом сетки $\Delta \tilde{\tau} = 0.01$ по-казаны на рис. 56. С помощью линейной регрессии, примененной к линейному участку графика, были получены близкие к экспериментальным значения $E_0 = -1.57 \pm 0.3$ МэВ и $E_0 = -8.3 \pm 0.7$ МэВ соответственно. Значения параметров потенциала (22) составили: $B_{\alpha 1} = 3.73$ фм, $B_{\alpha 2} = 2.71$ фм, $a_{\alpha 1} = a_{\alpha 2} = 0.512$ фм, $U_{\alpha 2} = 38$ МэВ для обоих ядер,

 $U_{\alpha 1} = 27.44$ МэВ для ⁹Ве и $U_{\alpha 1} = 33$ МэВ для ¹⁰Ве. Небольшие различия в значениях последнего параметра можно объяснить различной поляризацией α -кластеров в ядрах ⁹Ве и ¹⁰Ве. Графики псевдопотенциалов (22) для ядер ⁹Ве и ¹⁰Ве показаны на рис. 5*a*, пропагаторы показаны на рис. 5*b*. Потенциалы взаимодействия α -кластеров с отталкивательным кором, подобные, показанным на рис. 5*a* рассматривались в работах [29, 30].

Распределение плотности вероятности для трехтельных конфигураций ⁹Ве ($\alpha + n + \alpha$) показано на рис. 6. Наибольшую вероятность имеет конфигурация с валентным нейтроном между α -кластерами $\alpha + n + \alpha$, конфигурация $\alpha + {}^{5}$ Не имеет меньшую вероятность. Для веса *w* конфигурации $\alpha + {}^{5}$ Не можно использовать оценку

$$w = C^{-1} \iiint_{G} dx dy d\theta \sin \theta x^{2} y^{2} \left| \Psi(x, y, \theta) \right|^{2}, \qquad (25)$$

Puc. 7. Топография (в логарифмическом масштабе) плотности вероятности $|\Psi_0(x, y, z, \theta; \tilde{\tau})|^2(a, e)$ основного состояния ядра ¹⁰Ве при $\tilde{\tau} = 18$ в координатах Якоби $\vec{x}, \vec{y}, \vec{z}$, для частной конфигурации $\vec{y} \perp \vec{x}, \vec{y} \perp \vec{z}$ (*b*) при $\theta = 90^\circ$ (*a*) и $\theta = 0^\circ$ (*e*) с примерами положения нейтронов (маленькие кружки) и α-кластеров (большие кружки). Наибольшую вероятность имеет конфигурация 1 с валентными нейтронами (динейтронным кластером n^2) между α-кластерами ($\alpha + n^2 + \alpha$), конфигурация 2 ($\alpha + {}^6$ Не) менее вероятна.

где θ – угол между векторами \vec{x} , \vec{y} ,

$$C = \int_{0}^{\infty} dx x^{2} \int_{0}^{\infty} dy y^{2} \int_{0}^{\pi} d\theta \sin \theta \left| \Psi(x, y, \theta) \right|^{2}, \qquad (26)$$

и область G — множество точек (\vec{x}, \vec{y}) , удовлетворяющих условиям $|y \cos \theta| > x/2$ при $0 \le x \le d$ и $|y \cos \theta| > x/2 - c$ при x > d. Для значений параметров c = 2 фм, d = 5 фм расчет дал оценку $w_{\text{theor}} \approx 0.27$, которая согласуется с экспериментальным значением $w_{\text{exp}} \approx 0.25$ из работы [31].

Распределение плотности вероятности для четырехтельных конфигураций ¹⁰Ве ($\alpha + n + n \alpha$) показано на рис. 7. Видно, что наибольшую вероятность имеет конфигурация с близко расположенными валентными нейтронами (динейтронным кластером n^2) между α -кластерами ($\alpha + n^2 + \alpha$),

Рис. 8. (*a*) Энергии занятых нейтронных уровней ядер ^{9,10}Ве в оболочечной двуцентровой модели в зависимости от расстояния *R* между центрами двух потенциальных ям типа Вудса–Саксона, сплошная кривая для $|m_j| = 3/2$, штриховая и штрих-пунктирная кривые для $|m_j| = 1/2$. (*б*, *в*) Плотности вероятности (в логарифмическом масштабе) в цилиндрических координатах (по горизонтали – ось симметрии) для трех низших уровней нейтронов для R = 3 (*б*) и R = 4 фм (*в*).

конфигурация α + ⁶He имеет меньшую вероятность.

Представленные на рис. 6, 7 модели согласуются с представлениями о форме ядер ^{9, 10}Ве как о ядерной молекуле [32—35], состоящей из двух α -кластеров и внешних (валентных) нейтронов.

Результаты расчетов состояний нейтронов в двуцентровой оболочечной модели ядер ^{9,10}Ве представлены на рис. 8. Распределение плотности вероятности двух низших заполненных уровней соответствует нуклонам в двух близких видоизмененных (поляризованных) α-кластерах. Распреде-

ление плотности вероятности для третьего уровня сходно с распределениями валентных нейтронов на рис. 6, 7. Таким образом, и модель ядерной молекулы и оболочечная модель объясняют положительное значение параметра квадрупольной деформации ядер ^{9, 10}Ве.

ЗАКЛЮЧЕНИЕ

Предложенный поход к расчетам характеристик основного состояния ядер ^{6, 7, 9, 10}Ве может служить полезным дополнением к существующим более сложным теоретическим методам. Он позволяет достаточно просто определить зависимость энергии основного состояния от параметров потенциалов и вероятности различных конфигураций составляющих систему частиц.

СПИСОК ЛИТЕРАТУРЫ

- Пенионжкевич Ю.Э. // ЯФ. 2011. Т. 74. С. 1641; Penionzhkevich Yu.E. // Phys. Atom. Nucl. 2011. V. 74. P. 1615.
- Пенионжкевич Ю.Э., Соболев Ю.Г., Самарин В.В. и др. // ЯФ. 2017. Т. 80. С. 525; Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V. et al. // Phys. Atom. Nucl. 2017. V. 70. P. 928.
- Самарин В.В., Науменко М.А. // Изв. РАН Сер. физ. 2019. Т. 83. С. 460; Samarin V.V., Naumenko М.А. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 411.
- Samarin V.V., Naumenko M.A. // Nuovo Cimento C. 2019. V. 42. P. 130.
- von Oertzen W., Freer M., Kanada En'yo Y. // Phys. Rep. 2006. V. 432. P. 43.
- 6. Freer M. // Rep. Prog. Phys. 2007. V. 70. P. 2149.
- Самарин В.В., Науменко М.А. // ЯФ. 2017. V. 80. С. 473; Naumenko M.A., Samarin V.V. // Phys. Atom. Nucl. 2017. V. 80. P. 877.
- Voronchev V.T., Krasnopol'sky V.M., Kukulin V.I. // J. Phys. G. 1982. V. 8. P. 649.
- Zhukov M.V., Danilin B.V., Fedorov D.V. et al. // Phys. Rep. 1993. V. 231. P. 151.
- Кукулин В.И., Краснопольский В.М., Миселхи М.А. и др. // ЯФ. 1981. Т. 34. С. 21; Kukulin V.I., Krasnopol'sky V.M., Miselkhi M.A. et al. // Sov. J. Nucl. Phys. 1981. V. 34. № 1. Р. 21.
- Kukulin V.I., Krasnopol'sky V.M., Voronchev V.T. et al. // Nucl. Phys. A. 1986. V. 453. P. 365.
- 12. Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. М.: Мир, 1968
- 13. *Блохинцев Д.И*. Основы квантовой механики. М.: Наука, 1976.
- 14. Шуряк Э.В. // УФН. 1984. Т. 143. С. 309; Shuryak E.V. // Sov. Phys. Usp. 1984. V. 27. P. 448.
- Shuryak E.V., Zhirov O.V. // Nucl. Phys. B. 1984. V. 242. P. 393.
- Самарин В.В., Науменко М.А. // Изв. РАН Сер. физ. 2016. Т. 80. С. 314; Samarin V.V., Naumenko М.А. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. P. 283.

- 17. Naumenko M.A., Samarin V.V. // Supercomp. Front. Innov. 2016. V. 3. P. 80.
- 18. https://developer.nvidia.com/cuda-zone/.
- Перепёлкин Е.Е., Садовников Б.И., Иноземцева Н.Г. Вычисления на графических процессорах (GPU) в задачах математической и теоретической физики. М.: Ленанд, 2014.
- 20. Сандерс Д., Кэндрот Э. Технология СUDA в примерах: введение в программирование графических процессоров. М.: ДМК, 2011.
- 21. http://hybrilit.jinr.ru/.
- 22. *Флюгее 3.* Задачи по квантовой механике. Т. 1. М.: Мир. 1974. С. 106.
- 23. *Ву Т.Ю., Омура Т.* Квантовая теория рассеяния. М.: Наука, 1969.
- Харрисон У. Псевдопотенциалы в теории металлов. М.: Мир, 1968.

- 25. http://nrv.jinr.ru/.
- 26. http://cdfe.sinp.msu.ru/services/radchart/radmain.html.
- 27. *Самарин В.В.* // ЯФ. 2015. Т. 78. С. 133; *Samarin V.V.* // Phys. Atom. Nucl. 2015. V. 78. P. 128.
- 28. Winther A. // Nucl. Phys. A. 1994. V. 572. P. 191.
- 29. Bando H. // Nucl. Phys. A. 1986. V. 450. P. 217.
- 30. Michel F., Ohkubo S., Reidemeister G. // Prog. Theor. Phys. Suppl. 1998. V. 132. P. 132.
- Lukyanov S.M., Harakeh M.N., Naumenko M.A. // World J. Nucl. Sci. Techn. 2015. V. 5. P. 265.
- 32. von Oertzen W. // Z. Phys. A. 1996. V. 354. P. 37.
- 33. von Oertzen W., Freer M., Kanada-En'yo Y. // Phys. Rep. 2006. V. 432. P. 43.
- Okabe S., Abe Y., Tanaka H. // Prog. Theor. Phys. 1977. V. 57. P. 866.
- 35. Okabe S., Abe Y. // Prog. Theor. Phys. 1979. V. 61. P. 1049.